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Synopsis

In natural rivers, the forms of the channels,  the hed slopes, the
hreadth, the forms of eross sections, ete.  are all very irregular and inces-
santly changing. It is IIII]‘NN\IIDII‘ to grasp them definitely.  Yet the flow
in rivers is steady and nearly uniform in the broad means. The distur-
hanees on the flow cansed by these irregularities damp away within a few
kilometres and  have certain limited  dimensions and durations.  The
stochastic character of the colleetive of these elementary disturbanees causes
a laree seale loncindinal mixing.  The ovder of magnitude of the uhﬂusmn
cocflicient mav he estimated 10 be 0"~ 10% . g. = according 10 the scale
of a river. Introducing the offeet nf lnn"llmlmll dilTusion caused by the
mixing inta the cquation of continuity and assuming the mean flow taken
over a suitable range 10 he steady and uniform, the differential equation
of flood waves was derived., th an equation of diffusion containing a term

of :lﬁ?«)ﬂmn A< the equation 15 non-lincar, an approximate method of
solution was disenssed and solutions were obtained under several conditions.
They well e xplain the properties of flood waves,  The approximate ciquation
of flood waves is linear. a flood of any form is. therefore, supposed 1o be
composed of m: Yy c'll‘lnl ntary flood waves of simple character, unit
graph, or unit flood. "A method of computing the unit graph was deseribed
and some numerical ex: mimples were shown. I the last, some of the results
ol observations made on an artificial unit flood in the Yedo River were

compared with the theoretieal computations.  Their agreement is excellent,
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1. l,ungitudinal Mixing in Rivers
(1) Nature of the flow in rivers
The flow in rivers is usually treated as one dimensional flow. The
equation of motion is approximately given |>y

At " 1 au."': A (7 au.) All

& L S S ..
w2 e 3\ JTE, TR )

L
where g aceeleration of gravity

u  velocity ol flow

I depth of the river

i slope of the river bed

7 turbulent cocflicient

t  time

v coordinate axis taken along the river and positive down-

stream

z  eoordinate axis laken vertically and positive downward,

with the houndary conditions :

al r=0, u(0, t)y=mn,.
z=1). % a”:-—’]'.
Az F eeaeaes e .(2)
o 5
::I,. ‘/Ia: :~—~;‘ll‘,,~

where 1, is the hottom velocity and 7 is the wind stress, if any, and the
initial condition :

at t=10. (v, N =mn, .

Integrating the eq. (1) with respeet to = from the surface to the bottom
and dividing by Il. we gel

AUl AU* 3 oAl T
= — " — A 5y s (3
Al *: 2 Av ’ +'[!(. 9.\') 11 )
where
I 174 . I 1 5
l/:: ‘- II.!/:, //,” ":.— “ ll'l’Z §
I Jo I7TJe
and
A= T" s e (1)
': i, )

So far as the vertical profile of the velocity distribution is variable.

the factors o, F change with time and position. In the river hydraulics



3

they are, however, treated usually as eertain’ constants which means the
flow is practically steady and nearly uniform in ordinary channels. Permitt-
ing this assnmption 1o hold, we divide the mean velocity U into two parts
such as

[": (r“ + (7[[. I’ e ’;I-[. f;(/.—: 0 .

1]
where {7, is the mean steady and uniform veloeity and 4t/ is the (luctua-

ting veloeity.  They satisfy the differential equations

.o (o ol _
—-ﬂ(,’;,-};»g(za-—aat“):”, ........................ (5)

and

Aoll Al/ e . Al T
‘ ettll=o s =2 e YLD B e E Yz v zvimsssni §
ot e A s g’(',' av) I . (2)

respectively, where

l'::l.”—}-l'r ’,_:,,;1"}_,,!
[t will be reasonably assmmed that the jrregularities 70 I, and T are
composed ol steady part and non-steady part. We assume '

. All T
steady part of 4 ) e L :0, x -0,
y part o g_(.ll r)\-')+” X

=J)|(.T)7‘30. x>0,

Al T ,
o ')+” — 0, e 0L

r(7)

non-steady part of g(il_

=) (% B #0: o 0
Then the solution of the eq. (6) nnder the conditions
oll(x, 0)=0 and gU0, t)=0.
is given by

’ By o - 8 onf oft—<
o= I/g D, (&ye e J(l;“*‘s Djx—all[(t—c50 zie™®=0de . (8)
‘. 0 0

re—alaf

When the drregularities 7, II, and T ave localized at < and =, their
effects upon 4l7 are given by

D) ()_'.r(,r

-—l") - R ‘ i
l).| Gra i ("‘-n” w(l=%1) .
o, F (S ©)

ol =

Sinee it has damping factors exp 230, (1—2) ¢ and exp {—— e
: “,
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X (\‘—5)} for 1 and « respeetively, any - elementary disturbance ._c]amps

away within finite time interval and distance, in other words. it has finite
dimension and duration.  In rivers of a few metres depth with the bed of

sand or gravel.- the clementary disturbanee will damp within a few kilo-
~metres and several ten minutes.

(2) Statistical effect of clementary disturbances,

As is shown in the formula (&), the effeet of the irregularities upon
al7 is the superposition of those of the elementary irregularities localized
at any time and position.  In actual rivers of movable hed, i, H, and T
fluctuate very irregnlarly with respeet to ¢ and v and we can not definitely
grasp the trae picture of them not only practically. but also in principle,
because some stochastic process underlies the phenomena. Tt will be,
therelore, reasonably inferved that the colleetive of al7 constitutes a sort
of turbulence, the elements of which are given by (9). The most impor-
tant statistical effect of turbulence is the phenomena of diffusion. By the
analogous reasoning with the ordinary eddy diffusion. the diffusion coefficient

in our case will be given by the expression

SRy e e (10)

where R s the dimension of an clementary disturbance.  1f we take U
to be several ten eentimetres per second and R a few kilometres, then the
diffusion coflicient will assame the value of the order of 10%< 107 e, g 8
In large rivers such as the Yangtzekiang, the Mississippi it will be of the
order of 10" e, g. s.. By this process ol longitudinal diffusion, any physical
(uantity of conservative character, il its mean value is taken over a few
Kilometres or over several ten minutes, will he transported downstream per

unit time Ihrnugh unit cross seetion of a river I)y the amount

The diffusion phenomena deseribed  here constitute the basis of the

following discussions.

2. Differential Equation of Flood Waves
(1) Formulation of differential cquation

We assame. for the simplicity sake. that in the mean the channel of

a river is uniform and has a rectangular cross section.  Further, we assume
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the mean motion is aniform and steady and the collective of fluctuating

disturbances due to all ivresularities constitute a sort of longitudinal tur-

bulenee resulting in a phenomena of horizontal diffusion. A vertical column

of water is then transported  downstream not only by the mean stream,

but also by the action of diffusion.  The equation ol motion now becomes

I—

e /! ,'-)/[\ ;
z.mcw/ub/). ..................... s (12)

where (7 denotes the mean velocity and

where

waves

where

all Kl ) _ I
At ox ox?

O=U.H. 5=3U.R.

Patting the eq. (12) into the eq. (13). we get the equation of flood

All 3("» r)l( __/lr)"ll
Al 2 9y v’ ;’

_ - ”a"’ |

The bonndary conditions for ¢ < 0 are as follow :

at the wpper end x=0. H=H,4-h) 4 F()s.cueeeeeiii. ... (16)

where 11 and h, arc numerical constants and

at the lower end  y=x.

cither

which is the

or a dam,

or

which s the

case where v, is very large or the river empties into a lake

HEw s By BT & csvimimcin s v (19)

case where at the lower end the river slage is regulated
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artificially or the river enters into the tidal estuary. As to the initial
condition, we assume simply

”(;V. 0)::[[,,, .............................. (20)

i. e., before the flood the river has a uniform depth.

As the equation (14) is non-lincar, we must content oursclves with
approximation. In ovdér to get an approximale solution, we assume the
solulmn is expressible by the functional series'™

H= (H,+h,) @1 P } ...... 21
(Tt {1+ Hyphy t (Hyhy? 20
where @, @u oonens satisfy the condition

at, :‘.:0. 9,)‘ s ’,’, ¢._.'-—-'¢~;:¢l= REEEEERD _—_() A

Putting (21 into (14) and collecting the terms of the first order with
respect to 1/ (H,4h)) we get for the first approximate solution an equation

A, +'“’n A = e,

: =, e 22
Al 2 Ax A7, (22)
where
(I, +h)U, :
1y == 9; TR L3 sevesssesceanscansses (23)
and
U,=c \/(II"_}_/,n)i, ........................ (24)
with the houndary conditions for ¢ -0
at x=0. @ (05 £) ()5 wonvanmnwsnssaninssosans (25)
al  x=x, & 5 (26)
A
or @ (X D =H() =hgs ovvviviniaiiiaiiiinnnes (27)

and the initial condition :

at t=10. ¢ (x. 0)= By eeevernensennes ........... (28)

In the same manner, for the sccond approximate solution ¢, we get
an cquation

39, AUy 39, _ Vg, T (= 29
i i 5 == s B ) R —— (29)
where
5 3,80\ 3U, (¢ ;
R ) ) PR A e T 30
(% 8) 4rz'(r).v) 4”6(‘( ) (39)

with the boundary condikons for ¢ - 0:



at  v=0, G0, By ssaingss S 31
Ap, Q¢
At A= i . TE——— 32
it A==l N (32)
or oalys £Y=0, il SRR iR (33)

and the initial condition :
at =0, @a(vs 0) =00 e, (31)

(2) Solution of the diffferential cquation

I the following we shall mainly concern with the first approximation.
The first approximation is given by

=TT el 0% B coomenssrenens eevveen: (35)

where ¢ i< the <olution of the e (22). The coeflicient g, is composed
of two terms. The value of the one may he greater than the other, but
they will pl'uln;.ul)l) be of the same order, so that the either of the two will
not he negligible. ’

So far as the form of the diffusion coeflicient 7 1s not known, it will
be wise to treal the coeflicient g as a certain nunerical constant 1o he
determined by observation. This procedure is frequently used in meteorolo-
ay and oceanography giving results of suflicient approximation.  In the
following we shall simply denote g for g, '

The solution ¢, under the boundary conditions (25), (26) and initial
condition (28) is then given hy

w %) 3
2y “ 2 ‘0 =y
@ = — i, o2 \‘--1,.{ )+5n} /e sin

] 2/1
,1 () ) e ’,.., m 2
X 1”(.1)+”«.."‘w{*':;.+( ) /z(t--—/l)}rlZ. ............ ...(30)
" | 217 .
w here
w5 " W v ioiianns (37)
7 ;"» i st (38)

1"{(. 2“;‘ ):+ 5‘,.} -+ é::z .

and &, is the roots of the equation

tan &v,=— 2 S (39)

)

When v, tends to infinity, we have



........................ (40)
In the case
F(t) =0,
we get from the formulac (35), (10).
3 o) 8 0
¥
20, (™ [ mx . (21)
He Il 4 <M { i, R }z*
ot %—:S e o § e S
2 pt
; ; )"’ E
20, (et . (X w0 \2p7 *) e
.——‘1{0-—{-,].0-— \/; S‘) v (\xp{ le)/l =T :’L‘:_' }(l,, ......... (4‘1)
or
o) 2 o
H-—H 2 '-"J.I'l myY P ( "/t ) o
0—=1— f exX »{ S —G— }(lg'. ...... 41)/
h‘n \/71' Joy l 2[’ l‘;.:" ( )

This is a very nselnl formula for the later dizcussions.
When the function () is made of the sum of harmonic terms such
as

Fi(t)==1L, 80 g3l 5 unceconnsrmunonessiineis (42)

then assuming
{ —oo, X —> 00,

we get from (40) the solution of elementary flood waves as follows :

Om=1, (:xp{( ;’/’l _-])nl)r}sin (el — 0% ) g wasnsonns (43)
where
N e, o
/ +ink
Pu— (‘ ’1/‘) RN /. S — (44)
(/n 2/’

For the waves of long period such as
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Ler y
Ap =

it will be casily seen from the expression (-14),

A o
7.1:\: i * ]’n.:'..

w 2p ( )

so that

é,n=1/n sin (g— ), crsssivnnsnsrnsens (46)

«w

in other words, the flood wave propagates with the velocity o and docs
not damp. which is the case treated in the classical theory of flood waves.
On the other hand, for the waves of short period such as

Dl

o

4/z<
we get the relations

Bt T i sarinnmamens o (D)
N 2

In this case. the flood wave propagates with: greater velocity than o and
damps quickly.  These relations explain the reason why flood wave steepens
at the foreside and flattens gradually ax it proceeds downstream.

In this place we shall touch on the sccond approximation. Using the
value of the first approximation ¢,. we can calculate the function xd). .
The solution of the second approximate funetion ¢, under the conditions
(31). (32) (31) and in the case v— o s then given by

' V‘-r:: 2jr 2 {(-‘(I»[‘.m (x—f)J[m = Si”{”'(a‘—f) }IIU,
TJo ov L 2/1 JO ’/.;+( 1) )
. 2

XJ;/'(-?. 9 L‘Xp{—[u.?—}-(—z(:; )i,,l(z-‘—)}d.—}(le. e (48)

Because of the character of the funetion /'(x. t), over harmonic and
combined harmonie flood waves appear in the second approximation. But
owing to their short periods, they damp away quickly. This is probably
the main reason why the second and higher approximate functions Por Pus
,,,,, . do not sensibly affect the propagation of flood waves a fact which
will be shown in the next chapter,

(3) Effeets of wibutaries and distributaries
on the flood waves

The effeets of tributaries and ln‘um-hin;: rivers upon the flood waves in



10

the main stream are one of problems of interest.  They will be treated
as the sources and sinks distributed along the main river. In this case,
the eqquation of continuity is viven by '
All A() AH
e 0 R S B s SO (49)
Al AN A" :

where S(v, t) represents the amount of dizcharge into or out of the main
stream per unit length along the channel and per anit time divided by the
breadth of the channel, and the equation of the first approximate solution
¢, takes the form

A, L (?(P-"=/‘
At AY

R
Ax

" with the same boundary conditions as hefore.  As the eq. (50) is lincar,
the effect of the function S(x. ) which we shall denote ¢ will be
simply additive Lo the solution ¢, alrcady mentioned.  The equation of ¢}

is. therefore, given by

A, At A e 0
+m T=n S (1, T ) VAP, -~ 50y
Al 1Y A ( ) (5%

with the houndary conditions. for ()

al : ;\"_:(). (rn:((), l) =={) l ;
Y s (51
al =S50S ag =0. I ( )
AV

and the initial condition :
a1 =0 Clxr 0) =01 i, (51)

The form of the eq. (50)” and the conditions (51), (51)’ arc entirely same
with those of ¢, so that the effeet ¢ is given by the formula (18) where
the function S{v, /) now stands for the function /'(x, t).

3. Practical Exiunples
(1) Unit graph method

In order to caleulate the first aporoximate solution it is necessary to
kinow the form of the function F(£). When the functional form is simple,
it may be possible 1o evaluate the integral analytically, but in actual cases
it is desirable to deviee some practical method  suitable for numerical

computalion. For this purpose, we divide the time coordinate into many
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clementary parts of equal interval ¢, which is selected conveniently  for
respective cases and assume that the funetian F(t) is constant in cach
clementary interval.  Then the solution @, is expressed as the sumn of
clvmﬂnlmv integrals calenlated for each interval,  The vl('mvntary integral
is called the unit graph and the corresponding flood is called the unit flood.
Thiz method of evaluation is usually called the unit graph method and is
proved to be very effective in the lincar problem™.
For a solitary unit flood, we have

H=H,4+h,+F@)~1, for large t. i e. hy~0.
So, if we take
l I'=0, £ 0, )
F=, 0 £ 6 B Frcsnemmimpsameviizeis (D)
L

then & represents the height of the unit flood at the upper end above normal
“river stage. Since the problem is linear. the solution under the conditions
(52) i e. the amit graph, is equivalent to the sum of 1wo solutions ¢y and
@) mlh respective conditions such that

at x=0, =0, t 0,

F=h, 0:¢,

and at r=10, F=0; -5
F=—h ¢t .t.

The former solution is given by the formula (41) where h now stands
for A, and the latter is also given by the same formula where, however,
the time origin i< displaced by ¢, and —h stands for h,. The solution of
unit. graph is, therefore, reduced to the evaluation of (11) and this is an
casy task. A numerical example of the solitary unit flood is shown in
Fig. 1-A where the ratio of flood height (H—11) /h is plotted against time
for various distances. This example is based on the following data :

w="10cm/sce, p==10" & @ 4 t,= 5 hours;
r=2.2. 14, 21 and 32 km.

The form of an unit flood flattens gradually as< it propagates downstream.
Moas asymmetrie, th(- slope of the foreside heing stee per than the slupo of
the hackside.,

When two unit floods occur successively, they merge gradually into
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a single flood as they propagate downstream.  An example is shown in
Fig. 1-B where hoth unit floods are assumed to be same as that in Fig.

1-A and the interval of the floods is 2.5 hours.

In the practical application of the unit graph method to the flood of
any form, it will be a matter
the

be shown :

of concern how to choose the time interval
To sce the degree of appm\mmu(m, an example will
We assume,. for the (xdll)l)h‘. dt the upper end

of unit flood.

F(t)y =sin 7. — 0 < L 4 W,y rvrieiniennnnn. (55)
) A 0o B
Okin Okm
n 50
I ¢ 0 /5 20 25 2 3
/{)T“‘ . ‘_...us,-...l.n._n_] 1 P .
2.lkm llkm
g,
S
S
o 70 5 20 75 20 28
k U SRS SN SNRRSRovoS b I i | P AP - Gt
X Wkm Wim
8
e
E‘ =
X
: f io ..J"\z—n.ﬂ_._ '14
A 3
iSe) 2tkm
)
55
P‘a
Y-
(&)
o 0 . I . S S
= m ) 10
S ik Sl km
&
50 50
A I T A A

£ /a,ased Time (t)in Hours

T At des o

B Y LN Y

f/ops(’r/ Time (t)in Hours

Fig. 1-A.
Fig. 1-B.

Propagation of a solitary unit flood.

Propagation of two successive unit floods.
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then the flool wave at any point v is given hy the expression (43).

Putting
m="10cm/secc, p=107c. g. s.. et =8 hours,
y
we get at the station x=14 km
¢, =0.32 sin{;(t—=4.5)}. tin hrs. ... R )

The graphs of (55) and (56) are shown in Fig. 2 in full lines. On
the other hand. we take, in trial,

t,= 1 hour,

and take the.mean value of sin 3¢ for cach interval as shown in the same
Figure.  Assuming the same value of o we caleulate the corresponding unit
araphs suceessively at the same station by the procedure mentioned above.
Then summing up these graphs, we get the flood wave at the station which
is shown in the Figure as series of dots.  The agreement is fairly good
in spite of snch a rough substitution. '

i PN
\ /| (0 km
50
B I e
/ 0 [ Analytical Calculation
L&) ee e
« W Unit Graph Galculation
« /
VD
SN 14 km
0
50l T'ime in Hours
Uig. 2. Comparison of analytical method with unit graph ealenlation.

(2) Comparison with ohservations

The merit of a physical theory is estimated by the degree of agree-

ment between theoretical consequences and observational evidences,  As the
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flood of any form is composed of a number of unit floods, it is best to
In 1943
Hideo Kikkawa made gome observations on an unit flood in the Yedo
River™.

one of the largest rivers of Japan.

compare the theory with ohzervation on a single unit flood.

The Yedo River is one of branch rivers of the Tone River,
It branches from the main river near
Sukai and taking the south south casterly course of about 60 km pours into
the Bay of Tokyo.

the regulation of its discharge.

Near the head of the Yedo River, a lock is build for
Operating the lock, Kikkawa produced
an unit flood artificially and pursued it downstream as far as 32 kilometres.

Some of his results is shown in Table 1.

Table 1. Observational resnlts of solitary nnit flood in the
Yedo River.

Dee. 7, 1943

Date of observalion.

Normal viver depth | Height of flood at : Slope of the bed @ [ Duration of flood at

1y ca. 60em

the lock I f)(_);'m

ca. 2x 104 | the lock £y 5 hours

Dis}tzm;zc‘ll(u-l.nw ‘ ”:1'%’!1"' {::’r‘“:]_"‘ Diiration of AFrit‘Im] time A‘l_'ri]\'al rtime
the ‘:‘ Y1 normal yiver flood in hours % ']L areat Sy roRt
m m | smn (-‘-IK : m hours m }murs
0 ! 90: I 5 ’ 2.5 0
22 87~ 8 1.5 0.9
14 _68 ! AR 8.0 3
21 i MoE 12.5 ! 10.1 45
32 . ‘ 19 2 15 | 12.0 , 7.6

I'rom these materials we assume

w=T0 cm/scc,  p=10"c..g. s, 1,=5 hours,

then the corresponding unit graphs at y=2.2. 11. 21 and 32 km are entirely
same to those already shown in Fig. 1-A. From these graphs the hnights
of the flood crest above normal stage, durations of the flood and the
arvival times of the crest and front were estimated. A comparison of these
estimated values with those in Tab. 1 is shown in Fig. 3. In the estima-
tion of the duration and arrival time of the front (by the term front is
meant the foremost part of the flood), some ambiguities may be expected
as to the stage of the river at which the determination is made.  For the
theoretical values in Iig. 3 two stages were asssumed such as

Hdf =

=52, and
I3

100;.
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A< the Figure shows, the ohseryed points mainly lie hetween them,  Gener-

ally speaking the agreement s sattl to he exeellent

L e T s it o
..4_oa Observea Values |
o« CLolciiored Values
UL O
v
e o
2 |
|
e e S
T !
J[”.Sa"":" pesmami
. Q) )
X E .
$E o Observed Valves|s¥-—-.... —— o Observed values
lk) o Calculoted Values, o (uloulated Volues
& o B 3 . N T o o . A
w_ Oistance in_kms | 1y Distace in kms | || 2 Distance jn tms | |
0 70 20 30 V73 7] W00 0 20 %

Fig. 3. Comparison of observational vesulis with theoretical computation
(solitary unit flood in the Yedo River).

(3) More gencral cases

In the dizsenssions so far (]('vt-]npm] the (]l'pf.]l and the bhreadth of
a river were assumed to be” uniform in the mean value, Although this
assnmption is very practical, there are many ecases where in the mean they

must he rather regarded as some funetions of . In these eases the cqnation

of flood waves assmmes somewhat a complicated form.  Sinee the physical
nature of the propagation of flood waves does not change, it will he surely
inferred that, in these cases also, the first approximation which ol course
of a lincar character, gives a suflicient approximation and flood of any form
will be composed of a number of unit floods.  The analytieal solution of
the anit graph s very troublesome to obtain and even if obtained. it will
be of the form not suitable for the nnmerical computations.  But, if we
get by an observation the hydrograph of any flood at some downstream
point together with the corresponding houndary condition at the upper -end,
we can obhtain the unit graph at -the point numerically 5 We divide the
time into constant intervals ¢, and assume the function F(t) given by the
hyvdrograph at the upper end as such

for O ticibn: Gt 822y W & Bt ...

F(t) = F. 8 r,

where O FLFL L. are numerical constants.  Let the unit graph at any
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point v=x, under the condition
=0, t <0, )
F=1. 0 = t <ty g ............. ....‘.......(58)

I'=0, t,<t,

be denoted by ¢(¢). By the assumption of the unit graph

GOy=0. 0. s evrererennn (59)

Then the flood wave at the point x, will be given by

H= H, 4 F (@) +Fp(t—=t) + Fup(6—26) +covunine. . (60)

As the height of the flood H—T1, is given by the hydrograph, its value
i« known for every value of £ so we get many algebraic equations con-
taining the function ¢(¢) as unknown.  Solving these equations successively
we can construet the function (1), Onee ¢h(1) is known, the flood of any-
form will be predicted at the point x, hy the hydrograph F(¢) at the upper
end. The writer is now preparing to obtain the flood characteristics of the

main rivers of Japan from this point of view.
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